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ABSTRACT

The Isothermal Dendritic Growth Experiment (IDGE)
is a microgravity materials science experiment
scheduled to fly in the cargo bay of the shuttle on
the United States Microgravity Payload (USMP)
carrier. The experiment will be operated by real-
time control software which will not only monitor
and control onboard experiment hardware, but will
also communicate, via downlink data and uplink
commands, wWith the Payload Operations Control
Center (POCC) at NASA George C. Marshall Space
Flight Center (MSFC). The software development
approach being used to implement this system, which
will be the focus of this paper, began with
software functional requirements specification.
This was accomplished using the Yourdon/DeMarco
methodology as supplemented by the Ward/Mellor
real-time extensions. The reguirements
specification in combination with software
prototyping wWas then used to generate a detailed
design consisting of structure charts, module
prologues, and Program Design Language (POL)
specifications. This detailed design will next be
used to code the software, followed finally by
testing against the functional requirements. The
result will be a modular real-time control software
system with traceability through every phase of the
development process.

INTRODUCTION

The Isothermal Dendritic Growth Experiment (IDGE)
is a microgravity materials science experiment
currently planned for three flights beginning in
1993. It is scheduled to fly on the United States
Microgravity Payload (USMP) carrier located in the
cargo bay of the Space Shuttle (Figure 1). The
experiment, originally proposed by Professor M. E.
Glicksman - now the Principal Investigator - of
Rensselaer Polytechnic Institute, is being designed
and built at the NA?AZLeuis Research Center (LeRC)
in Cleveland, Chio. '*

The scientific objective of the IDGE is to test
current mathematical models which predict dendrite
growth velocity and tip radius in a solidifying
metal melt as functions of dendrite physical
properties and metal melt properties. The data
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Figure 1. The IDGE, mounted on the USMP carrier in
the Space Shuttle cargo bay and shown along with its
mission payload complement.

being gathered will provide the means to verify the
existing models or, in the event these models should
prove flawed, to correct them. Correct models
could lead ultimately to improved techniques for
commercial metal production, since virtually all
metals and alloys solidify from the molten state by
a dendritic process.

The IDGE technical objective is to build and fly an
apparatus that meets all IDGE scientific
requirements, as well as all Space Shuttle safety
and interface requirements. In terms of the
software development effort, this implies the
development of a system which will operate the
experiment autonomously, will recover automatically
from most system faults, will accept input data
from the Space Acceleration Measurement System
(SAMS), will communicate with the Payload
Operations Control Center (POCC) both via downlink



data and uplink commands, and will be easily
maintainable over the lifetime of the experiment
(nominally, three flights). Autonomous operation
of the experiment will, in this case, include such
features as precise temperature control, onboard
image enalysis, 35 mm ceamera control, inter-
processor communication among three onboard
processors, and onboard storage of all critical
science data.

OVERVIEW

The Software Development Life Cycle

When developing a complex software system such as
that described above for the IDGE, the development
process is commonly broken down into five basic
stages: analysis, design, coding, testing, and
maintenance. Because these five stages cover the
entire range of activities that may take place over
the lifetime of a software system, they are,
together, referred to as the software development
life cycle. Of the five stages which make up this
life cycle, the first four relate to initial system
development, while the final stage - maintenance -
refers to any changes which must be made to the
system following its initial completion.
Maintenance aside, it is generally recommended that
approximately 50% of the available resources (i.e.,
time and money) be allocated to analysis and
design, approximately 15X to coding, and
approximately 35X to testing.

Analysis

The goal of the analysis phase is to obtain
agreement among all relevant parties as to the
functional requirements of the software system.
This can, alternatively, be thought of as the time
during which the "what" of the system is specified
(in other words, what the system is to do).

In the case of a space experiment such as the IDGE,
functionat requirements specification is
accomplished wusing input both from previously
generated documents (e.g., the Science Requirements
Document and the Engineering Requirements Document)
and from discussions with science and engineering
team members. These inputs are then used to
generate a Software Functional Requirements
Document, which is the primary output of the
analysis phase.

On the IDGE project, software functional
requirements were specified using the
Yourdon/DeMarco  methodology, as  supplemented
by the Ward/Mellor real-time extensions. This
methodology will be described in a subsequent
section of this paper.

Design

The design phase is the time during which the "how"
of the software system is specified. Using the
output of the analysis phase as input, the system
designer determines precisely how the required
software functions will be implemented. The

resulting detailed design is specified in a
Software Design Document, which is the primary
output of the design phase.

On the IDGE project, in addition to the input
provided by the Software Functional Requirements
Document, information gained from software
prototyping is being used as input to the design
process. The reason for this, as well as a
description of the specific design approach used on
the project, will be provided below.

Coding

During the coding stage, the previously generated
detailed design is used to produce the actual
system code which the computer hardware will
execute. While this task may be accomplished by
the system designer him/herself, it can also be
done by someone else entirely - a coder - provided
the system has been developed so as to permit such
an approach.

On the IDGE project, engineering code which is
based on the flight system design but written by
someone other than the system designer is being
used to test the engineering hardware. While the
actual flight code is to be written by the system
designer, for purposes of testing engineering
hardware, this alternative approach has been quite
successful . This experience, as well as the
circumstances that are conducive to using such an
approach, will be discussed belou.

Testing

The testing phase always consists of two distinct
types of testing: wunit testing and integration
testing. In addition, if software is being
delivered to a customer, a third type of testing -
acceptance testing - is performed by the customer.
These three types of testing are performed in the
order mentioned, and an error found at any point in
the process necessitates a return to unit testing
once the error has been corrected.

Unit testing refers to the testing performed
individually on each unit of the software system.
During this testing, the goal is to ensure that
every path through a unit's code has been executed
and been shown to provide the desired result.

Integration testing refers to the testing performed
on the entire system, or on some interconnected set
of units in the system, once the individual units
have been tested. The purpose of this type of
testing is to ensure that the system as a whole
functions as expected. Integration testing is thus
functional testing designed to demonstrate that
required system capabilities operate as desired.

The methods used to do unit testing and integration
testing on the IDGE project will be discussed

below.



Acceptance testing, as mentioned above, refers to
the testing done once the software system has been
delivered to the customer. On the IDGE project,
however, software is not actually being delivered
to & customer, so all testing activities will be
carried out during unit and integration testing.
Acceptance testing, therefore, will not be
discussed further.

Maintenance

The maintenance phase of the software development
process covers the entire period of time following
initial system completion. Any change made to the
software during this time, regardless of its
nature, is considered part of this phase of
development. Maintenance, therefore, includes not
only changes made to fix & previously undetected
bug, but also application-specific changes made to
customize a system (e.g., in the case of a space
experiment, mission-specific changes) or upgrades
made due to changes in technology.

while the impact that the IDGE software development
approach has on the maintenance process will be
discussed, a discussion of the maintenance process
itself is beyond the scope of this paper.

FUNCTIONAL REQUIREMENTS SPECIFICATION

System functional requirements specification is the
first, and perhaps the most critical, step in the
software development process. In generating the
specification, the system  developer must
communicate with all those involved in the project
and establish the goals for the remainder of the
development effort. In order to accomplish this
task in an effective manner, it is important that
the method used to generate the specification
possess certain characteristics.

Since user-developer communication is a major
concern at this stage of the development process,
the method chosen should facilitate this
communication and maximize the potential for users
to provide input to the developer. In order to do
so, the method selected should (1) use a vocabulary
with which the users are familiar, and (2) present
a "condensed" version of the system, where certain
details are suppressed in favor of presenting “the
big picture." This latter quality will not only
maximize the probability of wusers finding
requirements errors during the review process, but
will also allow the developer to take an
incremental epproach to development. Such an
approach simplifies the system developer's task by
altowing him/her to take advantage of varying
degrees of abstraction. At the same time, it
provides the ability to compare the system
description at various stages and check for
consistency, thereby helping to ensure proper
development.

In gdqition to the above features, a system
specification approach should also provide ease of

maintenance, so that any necessary changes can be
made without difficulty. This is an important
practical consideration, since change is an
inherent part of the specification process.

Furthermore, while the approach used should present
uthe big picture,” as mentioned above, it should
also permit the system to be described in
sufficient depth. This can be accomplished by
using an approach which takes advantage of
partitioning and leveling of detail.

Finally, one additional desirable feature - which
might be considered a consequence of those
mentioned thus far - is that the approach used
shoutd be primarily graphical as opposed to
verbal. A graphical approach 1is not only
consistent with the previously mentioned features
but, in fact, provides an excellent means of
implementing those features.

The Specification Methodology

The type of approach used on the IDGE project to
accomplish system functional requirements
specification is described in detail in References
3 and 4, and possesses all of the above-mentioned
desirable characteristics. This approach is
referred to as the Yourdon/DeMarco methodology with
Ward/Met lor real-time extensions.

This method of system specification involves the
development of an essential model, so called
because it separates the essence of a system from
its implementation. The essential model describes
what a system does and what data it stores
irrespective of the technology used.

As with any model, certain assumptions are made as
part of the modeling process. In this case, three
basic assumptions apply: (1) The technology is
assumed to be perfect, which implies no internal
system errors are generated; (2) the processor is
assumed to have infinite memory, which implies
there are no storage concerns; and (3) the
processor is assumed to have infinite processing
capacity, which implies that processes run in zero
time. By making these three assumptions, all
implementation aspects of the problem are
effectively removed from consideration.

In generating the essential model, three types of
diagrams may be used: (1) data flow diagrams,

(2) state transition diagrams, and (3) entity
relationship diagrams.

Data flow diagrams (DFDs), as the name indicates,
show the flow of data in the system. The IDGE
essential model consists of twenty-one DFDs.

State transition diagrams (STDs) show the different
states in which the system may be found and
describe the transition from one state to another.
Twenty STDs were required to define the IDGE
essential model.



Entity relationship diagrams are used to show the
orgenization of data in the system, and are most
useful in a system which is very data-intensive.
The 10GE software system is control-oriented rather
than data-oriented, however, and is thus not a
data-intensive system. Consequently, no entity
relationship diagrams were produced. This aspect
of the essential modeling process will, therefore,
not be discussed any further. The reader is
referred to Reference & should additional
informstion on the topic be desired.

The IDGE Essential Model

The essential model used to define the system
functional requirements is actually composed of two
distinct models: the environmental model, which
describes the environment in which the system
operates, and the behavioral model, which describes
the behavior of the system.

The Envirormental Model. The IDGE environmental
model consists of two items: (1) the context
diagram, a special type of data flow diagram
which, as the name implies, represents the context

in which the software system operates; and (2) the
event list, which is a list of all the events that
occur in the environment to which the system will
have a pre-planned response.

The IDGE context diagram is shown in Figure 2. The
Large circle in the center of the diagram represents
the software system, while the boxes surrounding it
represent all the external subsystems with which the
software communicates, The labeled arrows between
the two indicate the net data flows into or out of
the software system.

A portion of the IDGE event list is shown in
Figure 3. The external event is listed on the left,
and the pre-planned system response is listed on the
right.

The Behavioral Model. The behavioral model for
the IDGE software system consists of three
components: (1) leveled data flow diagrams, (2)
state transition diagrams, and (3) a data
dictionary.
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Figure 2. The IDGE context diagram, which depicts the IDGE software system and the environment in which it

operates.
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There are twenty leveled DFDs which describe the
IDGE software system. One of these is shown in
Figure 4. The solid circles on the diagram are
referred to as data transformations, because they
show the manner in which data is transformed by the
system. The dashed circle in the center of the
diagram is referred to as a control transformation
because it contains the logic that controls the
processing. That logic is specified in detail
using a state transition diagram.

On the state transition diagram, Figure 5, the
boxes represent the different states in which the
system can be found. The items listed between each
pair of states give the conditions which will cause
the system to change states - shown above the line
- and the actions that will occur during the
transition - shown below the line.

The final component of the behavioral model, the
data dictionary, lists and defines all data flows
shown on the DFDs. The IDGE data dictionary
contains spproximately 275 entries and uses the
notational conventions described in Reference 1.
A sample page from this dictionary is shown in
Figure 6.

Figure 3. A portion of the IDGE event list.
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Figure 5. The STD which describes the pause command processing

control logic.

Development of the IDGE Egsential Model

In developing the IDGE essential model, the first
step in the process was to generate a context
diagram which showed the IDGE system in
relationship to the various subsystems in the
environment with which it would communicate.

The next step in the process was then determined by
consideration of the type of system being
developed. As the primary purpose of the IDGE
software system is to control the responses to
various external events, this system is considered
a control-dominated system. When developing the
essential model for such a system, the next step
following context diagram preparation is generation
of an event list.

Once the event list has been generated, this list
is used to guide the preparation of the state
transition diagrams. The event list not only helps
to determine what STDs are needed, but also helps
to illuminate the interconnections between STDs.

Once the STDs have been generated, they are then
used in conjunction with the context diagram to
prepare a set of leveled DFDs. As the DFDs are
prepared, all data flows on the diagrams are added
to the data dictionary and defined.

One such methodology is that
recommended by Ward and Mellor in
Reference 4. This approach consists of using the
essential model generated during the analysis phase
to develop what is referred to as an implementation
model. While the essential model is technology-
independent, the implementation model describes the
system as it is actually realized by a specific
technology.

Development of this implementation model involves
the generation of three distinct models: the
processor model, the task model, and the module
model .

The processor model describes the slliocation of the
previously defined processes to individual
processors, along with eny inter-processor
interfaces which result from such an allocation.
This model is derived directly from the essential
model, and thus results in a portion of the
essential model being contained in each processor
model .

The task model describes the allocation of each
process shown on the processor model to individual
tasks, as well as any resulting inter-task
interfaces. This model is therefore a further
refinement of the processor model.

Both the processor model and the task model are
implemented using data flow diagrams.
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Actuator_Control_Yalue which indicates the

Spot_Looler_Switch_Setting =
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Sath_Cooling_Duct_Blower_Statws_Flag value,

figure 6. Sample page from the IDGE data dictionary.

The module model describes the allocation of system
activities to modules and shows the hierarchical
organization of these modules. The graphical
portion of this model is implemented using a type
of diagram referred to as & structure chart.
Associated with each structure chart is a set of
module specifications, which provide a more
detailed description of each module on the
structure chart. A module specification can take
a variety of forms, but is usuatly verbal, and thus
constitutes a non-graphical portion of the model.

IDGE_Design Approach

On the IDGE project, the software design is being
implemented using onty the module model portion of
the Ward/Mellor design methodology. There are
basically two reasons for taking this approach.

First, the allocation of system activities to the
different processors was already decided at the
time the essential model was constructed, and this
information could therefore be taken into account
as the essential model was developed. As a result,
the completed essential model provided an accurate
description which, for a significant portion of the
system, would require few changes in order to
produce the implementation model. Those portions
not included in or adequately represented by the
essential model seemed to fall into one of two
categories: Either they were considered to be at
a low enough level to be handled exclusively in
the context of the module model; or they were felt
to be so complex as to require a more “applied"

approach, i.e., software prototyping. As a result,
it was decided that relatively littie benefit would
be obtained by taking the time to generate the
processor and task models.

The second reason for using this approach is purely
practical in nature: The IDGE flight software is
being implemented on a three-processor system by
one software engineer. In order to generate the
processor and task models, three complete sets of
data flow diagrams would have to be generated for
each model: one set for each processor. This would
be far too time-consuming a task for one software
engineer, particularly given the tight flight
schedule and the relative lack of benefit
anticipsted, as mentioned above. In lieu of this,
any complex subsystems not modeled by the essential
model, such as inter-processor communication among
the three onboard processors, are being handled by
developing prototype software. Given the particular
situation, this is felt to be a much more efficient
and beneficial use of the available time.

8y the same token, however, it should be ment i oned
that use of all three design models suggested by
Wward and Mellor might be much more critical and/or
far more beneficial on a different project,
particularly & larger one. On such a project,
multiple programmers/software engineers would, for
example, not only make it more feasible to generate
the increased documentation, but could also create
a much greater need for interfaces to be explicitly
specified.

Development of the IDGE Implementation Model

The IDGE implementation model consists of three
elements: structure charts (5Cs), module prologues,
and Program Design Language specifications (PDLs).

The structure chart, Figure 7, provides a
description of the hierarchical structure of the
software system. It not only shows what module
invokes which lower level modules (i.e., "who calls
who"), but also the input and output data passed
between each pair of modules.
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flight software.




SCs are immensely helpful as a visual aid, both in
initial system development and, later, during
maintenance. They are an excellent mechanism for
obtaining a quick overview of the system structure
as it exists at any level of the system.

Module prologues contain a summary of all relevant
interface information, as well as a complete change
history for the module. They are extremely useful
during initial system coding and debugging,
particularly if this is being done by someone other
than the system designer. They can also be quite
helpful to a maintenance programmer, by providing
critical information which might otherwise be
missed. The module prologue template being used on
the IDGE project is shown in Figure 8.

* Purpose.

* {nout Data:

* Output Bata:
.

et oo nnuay

* fadule “eader:
.

.
* Argumest List:

* Arjument Kime Type Use Dascription

* Slesa! Yarvabtey:

Yarvable Mame Type Use Description

Extarnal References:

. Original version

.ocoo-.l'it-llovnn-o.'onvllnt-lo-n.n-tnt

Figure 8. The module prologue template being used
on the IDGE project.

POLs, also referred to as pseudocode, provide a
detailed description of the module logic, using
structured English to define that logic. An example
is shown in Figure 9. 1f the PDLs are done
properly, coding of the modules should be greatly
simplified, as all the logic will have been thought
out shead of time.

In addition to simplifying the coding process,
however, PDLs are also very helpful to a maintenance
programmer. By providing a textual description of
each module, they ease the task of understanding
both the individual modules and the system as a
whole.

POLs for the IDGE system are being completed in an
iterative fashion with the SCs. An initial set of
SCs is generated, which is then used to aid in the
initial preperation of the associated PDLs. As
these PDLs are written, they then cause a further
refinement of the SCs, and so on.

{

.
® pause - perfarm pauss commind processing
.

v

Do Case
Casa 1: Pause Command Status_Fleg fndlcates that 4 Pause Command has
been Tnput
“Cat Currant Time®
Set Tioe_to _Resums - Current Tisw » Max Time_to Pause
Set Pyuse Coemand_Status_f1ag to PAUSED WITH TIRER SET
1 Crcla Phase i3 greater thas or equal to COOLING WiTH AATH_
TEMPERATURE MOT ThaLt
then
Sat Targat Temperature to Melt_Tsoerature
Set Contrsl_Mermistor to low ~esolution bath thermistor
Set Aew_wsgerature_Requested flag to TRUE
If Cycla Phase 13 greater than or equal to COOLING_SCH_VTTY SATH_
TerPERATURE_STABLE
then
Sat Stable Bath_Tesverature Flig ta FALSE
If Cycle Phase #quals SDM_STABLE_AT_SUPERCOOL_ANO_PERFOAMING_
EXPERINERT
then
Terminats Cycle Events®
Set Stadla_SCM_Temparature flig ta FALSE
Endif

taif
Set Cycle_Phase = START_OF_CYCLE
dtf

ces e ae e

Cate 2: Pause_Comsand Status Flag tndicates that 4n Unpause Command
kas been input
Set Pause Command Status_Flag to UMPAUSED
Case 3 Pause_Commind_Stsfus_Flag indicates that the experiaent i3
currently paused
"tet Current Time®
If Current_Time > Tise 0 Resume
then
Sat Pause Command_Status_Flag to UNPAUSED
gt f -

L I I P S Y

R

AR

Enddo

}

Figure 9. PDL for the pause command processing
module.

Generation of the IDGE implementation model in the
above-described manner is expected to take the full-
time effort of one software engineer for
approximately two years. At the conclusion of that
period, 2 Software Design Document containing SCs,
module prologues, and PDLs for the entire IDGE
flight system will be issued.

Development of this implementation model is being
guided by information provided in Meilir Page-
Jones'? "g’he Practical Guide to Structured Systems
Design.® This excellent text contains a
description of techniques which can be used in
making the transition from requirements definition
to design, as well as a discussion of the qualities
that distinguish a well-designed system from a
poorly-designed one.

CODING

IDGE Coding Approach

The IDGE flight software, which will run on an IBM
PC-compatible STD bus computer, is being coded in
Turbo Pascal. Code optimization, if required, will
be done in 8086 assembler, and the Turbo assembler
provided with Turbo Pascal used for code assembly.
Coding is expected to take approximately nine
person-months.

As the project is still in the design phase, no
flight code for the system has as yet been written.
Software to operate the IDGE engineering unit -
engineering code - has, however, been written, and
this was done directly from flight system PDLs.
While this code is thus based on the flight system
design, it was written by someone other than the
system designer. This approach was used so as to
allow work to continue on the flight software
design, while still providing the hardware team
with software to operate the experiment. When the
actual flight code is written, the coding will be
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done by the system designer, as it improves
reliability to have the entire system developed
from start to finish by & single individual;
however, for use in testing engineering hardware,
this alternate approach was tried and found to be
quite beneficial. The software design work
continued uninterrupted and, at the same time, code
was written for the portion of the system siready
designed - at the rate of approximately one module
(averaging approximately thirty Llines of code)
every two to three hours. Since little debugging
was required, the software system was operational
in a relatively short period of time.

This alternative approach to software development
is currently increasing in popularity. However, to
be most successful, it is important that all three
components of the module model - structure charts,
module prologues, and PDLs - be available to the
coder. 1f any one of these three items is missing,
the efficiency of the coding process will be
diminished.

TESTING

As previously mentioned, two types of testing will
be done on the IDGE project: wunit testing and
integration testing. .

Unit Testing

Unit testing of IDGE flight software modules will
be accomplished using test matrices. A test matrix
is a form on which all possible paths through a
unit's code are represented. It is generated by
taking every conditional statement in a unit's POL
- i.e., every statement for which the path through
the logic will differ based on existing conditions
- and listing each distinct condition on the form.
The unit is then tested by setting up the initial
conditions so as to guarantee that each of these
paths is taken at least once. As each path through
the code is successfully executed, the associated
item on the test matrix is checked off. When all
items have been checked, that unit has completed
unit testing and is ready to be integrated into the
system as a whole.

Integration Testing

Integration testing of the IDGE flight software
will begin with a functional test of the system
under nominal operating conditions. Several
complete mission profiles will be run, during which
different types of display data will be monitored.
This display data will be used to verify that the
system functional requirements, as specified in the
Software Functional Requirements document, have
been properly implemented. In addition, data taken
and stored during experiment operation will be
checked following each run in order to confirm

proper operation.

Once the unit has been successfully tested under
nominal operating conditions, the system's built-
in fault tolerance features will be tested. This
will be done by deliberately introducing errors
(e.g., by disconnecting various components) and
then observing the system's response, as indicated
by the display data.

Testing of the IDGE flight software in this manner
would normally be expected to require the full-
time effort of one software engineer for
approximately eighteen months. Flight schedule
realities, however, may mean that testing witl
instead need to be completed in three to six
months. As a consequence, it may be necessary to
increase the project staff during the latter
portion of the development effort, in order to
accommodate this accelerated schedule.

CONCLUDING REMARKS

The software development approach being used on the
IDGE project and described above was selected based
on the specific needs of the IDGE project. The
approach used is essentially that described by Ward
and Metlor in Reference &, but tailored as
appropriate to the circumstances. Tailoring of the
approach is, however, not at all contrary to what
was intended by Ward and Mellor, as they indicate
clearly in the following: "We must emphasize that
the models we have laid out above do not constitute
a development methodology for a project. Each
project must tune, or tailor, this general scheme
for its own use."

When future projects are choosing the approach most
appropriate to their needs, it is hoped that the
IDGE experience, as described in this paper, will
be of some assistance.
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